
Computing History

Introduction

A computer is a tool for taking over difficult mental tasks

that humans are not good at, such as storing large

amounts of information and doing complex or repetitive

calculations. Although humans can do these tasks, they

are prone to making mistakes and are fairly slow. For

many tasks, such as building reliable bridges, scheduling

air travel, and analyzing weather data, we need tools that

can store millions of numbers and do complex calculations

with them thousands of times a minute. Let’s look briefly

at the development of these tools and why we ended up

with the computers we've got today.

The Difference Engine

1

1 All component images are public domain or used under Creative

Commons license as noted in footnotes. All emoji are from Twitter

Emoji, developed by Twitter and released on Github under CC-BY

4.0 license

https://github.com/twitter/twemoji
https://github.com/twitter/twemoji/blob/gh-pages/LICENSE-GRAPHICS
https://github.com/twitter/twemoji/blob/gh-pages/LICENSE-GRAPHICS

In the years around 1800, people increasingly said: we've

got difficult, dangerous, repetitive physical tasks that are

really hard on humans, let's create machines -- tools that

can take over these tasks and do them faster and better,

without getting injured. This was called the industrial

revolution.

Once using machines to do physical tasks was starting to

be widespread, mathematicians such as Charles Babbage,

noted that there are also many repetitive, difficult mental

tasks to deal with. For example, solving many engineering

problems (like building all those other machines!) requires

plugging numbers into long polynomials and getting out a

correct result, which was a long and tedious problem for

humans, who would sometimes get the wrong results.

Babbage designed a machine called the Difference Engine,

which could calculate polynomials. Suppose we have the

polynomial -5x2+99x-1782 and we need to know what it

comes out to for 100 different values of x; the Difference

Engine, once it was set up for this polynomial, would work

its way through all the values and show the results.

Babbage said, after explaining his idea to Parliament in

order to ask for money, “On two occasions I have been

asked, — ‘Pray, Mr. Babbage, if you put into the machine

wrong figures, will the right answers come out?’ I am not

able rightly to apprehend the kind of confusion of ideas

that could provoke such a question.” People who know

little about how computers work have always had trouble

understanding what they can and can’t do!

Babbage also worked on a design for a more general-

purpose machine he called the Analytical Engine. Babbage

corresponded with the community of mathematicians and

showed them his design; one of these was Ada Lovelace.

Based on his design, she outlined a series of steps--

settings for the engine -- that would result in a more

complex result than just a table of values for one

polynomial. It would have required a human to set up the

machine for each step and put the results together; the

Difference Engine wasn’t designed to follow the steps on its

own.

This was the beginning of the idea of hardware and

software. The physical parts of a computing machine are

its hardware; we build these to have basic capabilities. But

to do anything really useful and interesting, we would have

to combine these capabilities in some order to create a

result. Creating a step-by-step process to do this is called

programming. A program — software — is a process that

uses the built-in capabilities of the hardware to achieve a

more complex result.

Unfortunately, Lovelace never got to run her programs,

because Babbage never managed to get the complete

Difference Engine built2. But now the idea was out there

and in the 1800s similar devices started to appear.

2 Babbage built only a small-scale prototype. In the 1980s, Babbage’s

original designs were used to actually build his Difference Engine.

From Single to General
Purpose Computing Machines

3

After Babbage, single-purpose computing machines were

built more and more frequently. For instance, there was a

US census at 1900, and they used a machine called the

Hollerith Tabulating Machine to add up the numbers.

A single-purpose computing machine can only do one kind

of task. The Difference Engine could calculate polynomials,

but couldn’t add up census data. The Hollerith Tabulating

Machine could add up census data, but couldn’t calculate

polynomials. If you needed to do both, then you would

have to buy and store two different machines. If you

needed to do another task, you’d have to buy another

machine. Typically only governments could afford such

machines.

During World War II, the Enigma Machine used by the

German military took messages and encrypted them — put

them into a code. Almost all codes are not difficult to

crack, instead they take so long to work through because

3 "c.1900 Hollerith Census Tabulator" by Erik Pitti is licensed under CC

BY 2.0. To view a copy of this license, visit:

https://creativecommons.org/licenses/by/2.0

https://creativecommons.org/licenses/by/2.0

of the repetitive calculations required, that it isn’t worth

trying. The Enigma Machine could do more repetitive

operations when encrypting the message than a human

could, which meant that cracking it took much longer than

something encrypted by a human.

One of the people working on breaking the Enigma code for

the Allied side was Alan Turing, a mathematician. Like

many others in the mathematical community, Turing was

interested in the idea of general purpose computers.

Instead of having a single purpose computer for each job,

you would have a general purpose computer, and as new

jobs came up, you would tell this one computer how to do

each of them. This is much more convenient than having

to have a different machine for every task; instead you can

just have one. But you do need to then tell the machine

how to do each task, instead of having the task built in,

and you have to build in basic abilities that can be put

together to do many different tasks.

Turing worked out a formal, mathematical system for

describing general purpose computers. His theoretical

computer, the Turing Machine, is the basis of computer

science. A Turing machine is not a physical machine, but a

mathematical description of a perfect computer — the

computer that can do anything any other computer can do,

without limits of what hardware we could ever actually

build in the real world. This is important because, if we

can prove mathematically that you can't solve a certain

problem with a Turing Machine — the perfect computer —

then we know no other computer, no matter how powerful,

can do it either.

For example, you have probably experienced having a

computer program freeze while you were working. Now

you have two options, wait and hope that it will eventually

start working again, or assume it is frozen forever and

close it probably losing your work. If only you knew for

sure whether to give up or not! Why isn’t there another

program you could use every time to tell whether this

freeze is temporary or permanent? We can prove, using

the Turing machine, that it is not possible to create a

program that can tell if any other program is frozen

forever, so we know we shouldn’t waste our time trying to

write such a program.4

Data and Instructions

As part of the Turing machine, Turing came up with a way

of describing anything a computer could do, based on two

kinds of information: data and instructions.

The data are any values we need to store while doing the

task, including the ones we start with and any we find

along the way, particularly any final result.

 The instructions are the series of steps to go through to

process those numbers. These steps must be basic

capabilities that are built into the computer.

So, for instance, if you needed to find the maximum of a

group of numbers, then those numbers are data, and the

4 It may be possible to create a program that can tell if some other

programs are frozen forever, but not all.

maximum, the result we are trying to find, is also data.

Instructions might include storing the first number as our

maximum, and comparing each number in turn to the

current maximum, replacing the maximum if the new

number is bigger.

Storage and Processing

So, since we need data in our general purpose computing

machine, we need a place in the machine to put it: a

storage area. And we need the computer to follow our

instructions, so we need it to have a part that can do basic

operations like adding, subtracting, comparing to see which

of two numbers is bigger, etc.

We call the part that can follow instructions the processor.

Suppose I'm finding maxima of various lists of numbers.

Do I really want to enter the instructions to do this again

and again every time I have different data? No, I’m far too

lazy to do that, so we'll need to store not only the data, but

the instructions too.

After the end of the war5, Turing was working on the

design of a real, physical computer with processor, storage

for data, and storage for instructions. At this point, there

were different opinions in the mathematical community

5 spoilers: The Enigma code was broken and the Allies won, thanks

Alan.

(part of which was becoming the computer science

community) on whether we should have separate storage

for the two things or not.

In 1951, Turing was arrested. After his house was burgled,

he had admitted to a police officer that he was dating a

young man. He was eventually offered the choice between

prison and chemical castration. About two years later he

died — probably suicide. Turing was only 40 and he could

certainly have continued making contributions to computer

science for decades. In August, 2014, Alan Turing was

given a royal pardon by Queen Elizabeth6.

But the work went on. In the United States, John von

Neumann7 worked on the EDVAC project, a computer that

had one part for processing, and one part that stored both

data and instructions together, in the same way. All digital

computers since are based on this stored program machine

(also known as a von Neumann machine).

Accelerating Technology

In 1950, a computer was an enormous object. You didn't

walk into the room with your computer, you walked into

your computer, which took up the whole room. The basic

component computers were built from was the vacuum

6 Who should be asking whose pardon is a matter of opinion. Also see

Official statement on Alan Turing's persecution
7 When not working on his other interests, like economics, quantum

mechanics, game theory, nuclear weapons, and abstract math.

http://webarchive.nationalarchives.gov.uk/+/number10.gov.uk/news/latest-news/2009/09/treatment-of-alan-turing-was-appalling-pm-20571

tube, which was large and complex and expensive to build.

These computers were mostly owned by governments or

big businesses because they were so expensive. In the

years since, we have made our computers smaller, faster,

and cheaper.

Eventually, vacuum tubes were replaced by much smaller,

cheaper components called transistors. Computers built

from smaller, cheaper pieces could be smaller, cheaper

computers. But we were still building computers by

creating thousands of these transistors and assembling

them, an expensive, time consuming process.

At the start of the 1970s, a new approach was found –

integrated circuits. This allowed the transistors to be

created all as one piece, in a single process, at microscopic

size.

The resulting hardware was so small they were called

microprocessors. And, amazingly, the integrated circuit

process not only made the computers smaller, but even

cheaper to build. For the first time, we could build

computers you could actually fit on a desk, and that were

affordable for personal use. They have continued getting

smaller since.

Although certainly people started buying computers to do

necessary tasks, they also wanted to be able to play games

on the computer. Computer games grew more popular,

and then something strange happened: game consoles

came out. A game console is a computing machine that

does only one kind of task: it plays games. It isn’t

designed for doing word processing or spreadsheets. We

are back to single-purpose computing machines!

Why, when that means we have to buy more than one kind

of computer? Some tasks, such as certain kinds of

calculation used for graphics, could be done through a

process using simple general operations, but could also be

built-in with specialized hardware. So if we don’t have to

compromise to provide general capabilities to do a variety

of tasks, we can build a single purpose computer that is

particularly good at the one task it does, and do it more

cheaply than building a general purpose computer that is

very good at this one task and also good at everything else

it needs to do.

In addition to the advances in hardware, we have made

advances in software. The Operating System is the

program (examples are Microsoft Windows 10, or Mac OS X

10.7 Lion) that is in charge of everything on the computer.

In the 1980s and 1990s, many advances were made in

designing operating systems and other programs that were

friendlier for people to use, encouraging even more people

to buy home computers.

A network is a system of computers that can communicate

with each other. Although the beginnings of the ideas that

would later be used to create the internet were already

coming together in the 1960s, it was in the 1990s that a

global network of computers that communicated with each

other became reality. Our networking abilities have

continued to advance, often spurred by the difficulties of

dealing with this huge-scale network that was cobbled

together through trial and error before we knew what we

were doing.

Moore’s Law

8

Moore's law is an observation made by Gordon Moore: the

number of transistors we were able to manufacture to fit in

the same space at the same price has doubled roughly

every two years.

Note that this is an observation about the past not a

physical law that determines the future9. Hardware

companies have taken this “law” to heart and try to time

things to this schedule.

Other people noticed that there have been similar patterns

for our advances in speed, graphics, and other aspects of

computing technology.

People in the media who don’t know what the law actually

says often talk about “processing power” or the “power of a

computer” doubling every two years. But computer

“power” is an advertising term with no real meaning, so it

doesn’t make sense to talk about doubling it.

8 "115 Years of Moore's Law, Transcending Silicon" by jurvetson is

licensed under CC BY 2.0. To view a copy of this license, visit:

https://creativecommons.org/licenses/by/2.0
9 Though Moore has also said he believes the pattern will continue for

some time.

Integrated Circuits

With integrated circuits, a whole component of a computer

can be made in one piece out of one material. How?

This material must be something that can sometimes be an

insulator – not letting electricity through – and sometimes

a conductor – letting electricity through like a wire. This

kind of material that can act both ways is called a

semiconductor, and how it acts depends on how we

chemically treat it.

The process for creating a component the integrated circuit

way is to first take our semiconductor and cover it in a

protective film that keeps any chemical from getting

through, but which breaks up when subjected to UV light.

A mask is like a stencil that has holes where the conductor

parts of the component should be. A light is flashed

through the mask onto the film, making parts of the film

break down so that some areas of the semiconductor are

still protected, but others are open.

Then we chemically treat it, and the areas the chemicals

touch have their electrical properties changed.

So essentially, an entire component of a computer can be

made by the process: film, flash, spray with chemicals.

(For real components, this will probably be repeated a few

times.) In fact, we can make many copies of the same

component at once by this method on one big slice of

semiconductor, and just cut them out afterwards. So the

process is very fast. It is also relatively cheap. And we

can make the components as small as we can make the

holes in the mask.

Storage and Binary

We needed to store information in a computer, but how?

Electronic components respond to electricity – either

electricity ON or electricity OFF. That’s all we have to go

on, so we will have to find a way to store information with

just those two possibilities.

Power OFF is generally used to mean no, and power ON to

mean yes. So, if we had some situation for which we

needed to store yes, we could light up one electronic

component with power, walk away, come back later, and

find the component still ON – successfully storing a yes.

Similarly we could turn that component OFF, walk away,

come back, find it OFF, and have successfully stored a no.

So now we have figure out how to store something in

electronic form.

We also use OFF to store the number 0 and ON to store the

number 1. So, suppose someone stored a 1 by turning a

component ON. I could then come by later, check the

component, and find out that they had stored 1. (Same

goes for storing 0 by turning the component OFF.)

So now we have a way of storing the number 0 and the

number 1 in a computer!!!

Which is as far as we ever got.

Modern computers are able to store the number 0 and the

number 1, and that’s it. That’s all. The computer you’re

reading this on can only store 0’s and 1’s.

But it turns out that’s enough to store any number.

Decimal numbers use only 0,1,2,3,4,5,6,7,8,9, but does

that mean we can’t store numbers higher than 9? No, we

just put those symbols together in longer patterns to

represent larger numbers. After 9 we go to two-digit

patterns: 10, 11, 12,…, 98, 99. Once we run out of two-

digit patterns, we go to three digits.

We can do the same even if we only have 0 and 1. We just

have to go to longer patterns sooner. Numbers based on

just 0 and 1 are called binary numbers. After 0 and 1, the

next number in binary is spelled 10. That’s how we spell

“ten” in decimal, but it’s how we spell “two” in binary. So

for two digits we have 10, 11, and then we have to go to

three digits.

For any number you choose, there is a binary pattern (just

0’s and 1’s). For large numbers, these patterns are very

long. Every binary pattern represents a number.

The math to convert between binary and decimal is fairly

simple. Think of how decimal numbers are written. 1010 in

decimal means we have one thousand, no hundreds, one

ten, and no ones: (1 * 1000) + (0 * 100) + (1 * 10) + (0

* 1). Each place in the number is a power of 10.

In binary, instead of thousands, hundreds, and tens, the

places in a number are based on powers of two: 2, 4, 8,

16, etc. So 1010 in binary means one eight, no fours, one

two, and no ones: (1 * 8) + (0 * 4) + (1 * 2) + (0 * 1).

Don’t forget: We write binary patterns with the symbols 0

and 1, but inside the computer, these are instead ONs and

OFFs. You can picture a pattern storing a number inside

the computer as a row of little lights, some of which are ON

and some OFF.

Now we know how to store numbers. But what about

everything else? We will have to reuse our binary patterns

to mean more than one thing. The same pattern might

sometimes represent

• a number

• a letter

• the amount of red at one point in a picture

• the pitch of a sound

• an instruction to tell the computer one step in doing a task

• …

For instance, the pattern 01000001 is used for both the

number 65 and the letter capital A.

Based on the context, the computer knows how to interpret

the pattern at any given time. For instance a pattern in a

.mp3 file would be interpreted as sound but the same

pattern used in a .docx file might be interpreted as text.

Processing

The part of the computer that does processing is called the

CPU. We have a similar problem for processing as we did

for storage. How do we build something electronic that

can perform even a very simple mental task without a

brain????

The basic electronic components we can build are called

gates. You can picture them as a box with two10 wires

coming in and one11 coming out. Suppose the wires going

in are A and B, and the wire coming out is C. There are

four possibilities for A and B:

• both OFF

• A OFF and B ON

• A ON and B OFF

• both ON

For each of these possibilities, we need to decide whether

the gate should turn the output, C ON or OFF in that case.

Example: Adding Binary

Here’s an example of how much thinking has to go into

designing hardware to do even something that seems very

simple: Suppose we use A and B to represent two numbers

10 but sometimes more, sometimes just one.
11 or, as you suspected, more

that we’re adding, and the result, C should be the sum

A+B. Remember that OFF is 0 and ON is 1.

• 0+0=0, so if A and B are both OFF, we want to turn C OFF

• 0+1=1 so if A is OFF and B is ON, we want to turn C ON

• 1+0=1 so if A is ON and B is OFF, we want to turn C ON

What if both are ON? 1+1=10 which is a two digit

number, so if A and B are both ON C should be OFF, but

this shows we also need to add more wires and another

gate to handle a carry. The carry gate would have the

same A and B going in, but be set up to always output OFF

unless A and B are both ON, and our result would include

both C and the wire from this new gate.

So, we can figure out how to set up gates to add one digit

binary numbers. To add longer numbers, we’ll have to do

this for each digit (and handle a carry from the previous

digit). So even for just adding, things get fairly complex

pretty fast.

Instructions and Machine Language

For every ability we want to build into our computer,

someone has to figure out what the gates should look like

to combine binary patters and achieve that goal. This is

why the capabilities that can be built into a CPU tend to be

very simple – adding, subtracting, copying patterns, etc.

Anything more complex must be built up from these very

simple abilities.

The part of the CPU that actually does such operations is

the ALU, the arithmetic logic unit.

For each capability in the CPU of a computer there must be

a binary pattern used to indicate that we want to do that

as the next step of our task. These are called the

instructions. A program to do anything interesting will be

made up of thousands and thousands of instructions.

The list of instructions that a CPU understands are called

its machine language. Different kinds of computer have

different machine languages.

You can imagine wires running from each binary ON/OFF in

the instruction register to different parts of the CPU so the

instruction can tell the ALU, data registers, etc what they

should do. In fact, in real computers things are more

complex and there is a whole extra component of the CPU

called the control unit that deals with decoding the

meaning of each instruction and setting the CPU to respond

correctly, but that is outside the scope of this course.

Input and Output

A computer that can store and process data technically

does what we want, but isn’t useful to us unless we have a

way to get information into and out of it. Since the

computer needs everything to be in binary, and almost no

humans like to work in binary, we need input devices to

translate information coming in into a form the computer

can use, and output devices to translate information

coming out into a human-friendly form.

A keyboard is a fairly simple input device. You press a key

with the letter you want on it, and the binary pattern for

that letter is sent into the computer’s storage. Most input

devices have a much harder job.

Anything stored in a computer must be in digital form, that

is, it must be a list of discrete values (that is, individual

numbers). But most things in the world aren’t lists of

values. They aren’t lists of anything. Most of the world is

analog – continuous information.

Sampling

Consider, for instance, a picture of a flower. That picture

isn’t a list, but if we want to store it in the computer, we

need a way to convert it into one. The standard way to

convert from analog to digital is sampling – break the

analog information into small pieces, and then record a

value for each piece.

For the picture, we can cut it into small squares, and

record the color at the center of each square. A standard

way to store a color in a computer is to have three

numbers saying how much red, how much green, and how

much blue are in the color. So the squares in the middle of

the picture would be stored with high values for red and

low for green and blue. (In the computer, of course, these

numbers are stored as binary patterns.)

Cutting the picture into a fairly small number of squares

resulted in something that doesn’t look much like the

original picture. To get closer to the original, we could

divide it into more pieces, but notice that this will make our

list of numbers much longer. Analog information can

always be divided into smaller pieces to get more detail, so

by definition sampling is always leaving out some of the

information in the original analog.

We could sample sound by recording the pitch and volume

at every millisecond, or the motion of a mouse by

recording the x and y position every millisecond.

Note that all of the following are digital, in different

formats:

• A B C format: Latin alphabet

• 1 2 3 format: decimal

• 011 101 100 format: binary

To be stored in the computer, information must be digital,

stored in binary format.

Once we have the information stored, the computer can

process it, but to do us any good we then need it

converted back to a form we can understand, using an

output device such as a monitor or speaker. The processes

for turning a list of values back into something a human

can appreciate are just as complicated as what we have to

do to get the data into the computer in the first place.

