
Computing History 

Introduction 

A computer is a tool for taking over difficult mental tasks 

that humans are not good at, such as storing large 

amounts of information and doing complex or repetitive 

calculations.  Although humans can do these tasks, they 

are prone to making mistakes and are fairly slow.  For 

many tasks, such as building reliable bridges, scheduling 

air travel, and analyzing weather data, we need tools that 

can store millions of numbers and do complex calculations 

with them thousands of times a minute.  Let’s look briefly 

at the development of these tools and why we ended up 

with the computers we've got today. 

The Difference Engine 
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In the years around 1800, people increasingly said: we've 

got difficult, dangerous, repetitive physical tasks that are 

really hard on humans, let's create machines -- tools that 

can take over these tasks and do them faster and better, 

without getting injured.  This was called the industrial 

revolution. 

Once using machines to do physical tasks was starting to 

be widespread, mathematicians such as Charles Babbage, 

noted that there are also many repetitive, difficult mental 

tasks to deal with.  For example, solving many engineering 

problems (like building all those other machines!) requires 

plugging numbers into long polynomials and getting out a 

correct result, which was a long and tedious problem for 

humans, who would sometimes get the wrong results. 

Babbage designed a machine called the Difference Engine, 

which could calculate polynomials. Suppose we have the 

polynomial -5x2+99x-1782 and we need to know what it 

comes out to for 100 different values of x; the Difference 

Engine, once it was set up for this polynomial, would work 

its way through all the values and show the results. 

Babbage said, after explaining his idea to Parliament in 

order to ask for money, “On two occasions I have been 

asked, — ‘Pray, Mr. Babbage, if you put into the machine 

wrong figures, will the right answers come out?’ I am not 

able rightly to apprehend the kind of confusion of ideas 

that could provoke such a question.”  People who know 

little about how computers work have always had trouble 

understanding what they can and can’t do! 

Babbage also worked on a design for a more general-

purpose machine he called the Analytical Engine.  Babbage 

corresponded with the community of mathematicians and 

showed them his design; one of these was Ada Lovelace.  

Based on his design, she outlined a series of steps-- 



settings for the engine -- that would result in a more 

complex result than just a table of values for one 

polynomial.   It would have required a human to set up the 

machine for each step and put the results together; the 

Difference Engine wasn’t designed to follow the steps on its 

own. 

This was the beginning of the idea of hardware and 

software. The physical parts of a computing machine are 

its hardware; we build these to have basic capabilities.  But 

to do anything really useful and interesting, we would have 

to combine these capabilities in some order to create a 

result.  Creating a step-by-step process to do this is called 

programming.  A program — software — is a process that 

uses the built-in capabilities of the hardware to achieve a 

more complex result. 

Unfortunately, Lovelace never got to run her programs, 

because Babbage never managed to get the complete 

Difference Engine built2.  But now the idea was out there 

and in the 1800s similar devices started to appear. 

 

2 Babbage built only a small-scale prototype. In the 1980s, Babbage’s 

original designs were used to actually build his Difference Engine. 



From Single to General 
Purpose Computing Machines 
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After Babbage, single-purpose computing machines were 

built more and more frequently.  For instance, there was a 

US census at 1900, and they used a machine called the 

Hollerith Tabulating Machine to add up the numbers. 

A single-purpose computing machine can only do one kind 

of task.  The Difference Engine could calculate polynomials, 

but couldn’t add up census data.  The Hollerith Tabulating 

Machine could add up census data, but couldn’t calculate 

polynomials.  If you needed to do both, then you would 

have to buy and store two different machines.  If you 

needed to do another task, you’d have to buy another 

machine.  Typically only governments could afford such 

machines. 

During World War II, the Enigma Machine used by the 

German military took messages and encrypted them — put 

them into a code.  Almost all codes are not difficult to 

crack, instead they take so long to work through because 

 

3 "c.1900 Hollerith Census Tabulator" by Erik Pitti is licensed under CC 

BY 2.0. To view a copy of this license, visit: 

https://creativecommons.org/licenses/by/2.0 

https://creativecommons.org/licenses/by/2.0


of the repetitive calculations required, that it isn’t worth 

trying.  The Enigma Machine could do more repetitive 

operations when encrypting the message than a human 

could, which meant that cracking it took much longer than 

something encrypted by a human. 

One of the people working on breaking the Enigma code for 

the Allied side was Alan Turing, a mathematician.  Like 

many others in the mathematical community, Turing was 

interested in the idea of general purpose computers.   

Instead of having a single purpose computer for each job, 

you would have a general purpose computer, and as new 

jobs came up, you would tell this one computer how to do 

each of them.  This is much more convenient than having 

to have a different machine for every task; instead you can 

just have one.  But you do need to then tell the machine 

how to do each task, instead of having the task built in, 

and you have to build in basic abilities that can be put 

together to do many different tasks. 

Turing worked out a formal, mathematical system for 

describing general purpose computers.  His theoretical 

computer, the Turing Machine, is the basis of computer 

science.  A Turing machine is not a physical machine, but a 

mathematical description of a perfect computer — the 

computer that can do anything any other computer can do, 

without limits of what hardware we could ever actually 

build in the real world.  This is important because, if we 

can prove mathematically that you can't solve a certain 

problem with a Turing Machine — the perfect computer — 

then we know no other computer, no matter how powerful, 

can do it either. 

For example, you have probably experienced having a 

computer program freeze while you were working.  Now 

you have two options, wait and hope that it will eventually 



start working again, or assume it is frozen forever and 

close it probably losing your work.  If only you knew for 

sure whether to give up or not!  Why isn’t there another 

program you could use every time to tell whether this 

freeze is temporary or permanent?  We can prove, using 

the Turing machine, that it is not possible to create a 

program that can tell if any other program is frozen 

forever, so we know we shouldn’t waste our time trying to 

write such a program.4 

Data and Instructions 

 

As part of the Turing machine, Turing came up with a way 

of describing anything a computer could do, based on two 

kinds of information: data and instructions. 

The data are any values we need to store while doing the 

task, including the ones we start with and any we find 

along the way, particularly any final result. 

 The instructions are the series of steps to go through to 

process those numbers. These steps must be basic 

capabilities that are built into the computer.  

So, for instance, if you needed to find the maximum of a 

group of numbers, then those numbers are data, and the 

 

4 It may be possible to create a program that can tell if some other 

programs are frozen forever, but not all. 



maximum, the result we are trying to find, is also data.  

Instructions might include storing the first number as our 

maximum, and comparing each number in turn to the 

current maximum, replacing the maximum if the new 

number is bigger. 

Storage and Processing 

 

So, since we need data in our general purpose computing 

machine, we need a place in the machine to put it: a 

storage area.  And we need the computer to follow our 

instructions, so we need it to have a part that can do basic 

operations like adding, subtracting, comparing to see which 

of two numbers is bigger, etc.   

We call the part that can follow instructions the processor.   

Suppose I'm finding maxima of various lists of numbers.  

Do I really want to enter the instructions to do this again 

and again every time I have different data?  No, I’m far too 

lazy to do that, so we'll need to store not only the data, but 

the instructions too.   

After the end of the war5, Turing was working on the 

design of a real, physical computer with processor, storage 

for data, and storage for instructions.  At this point, there 

were different opinions in the mathematical community 

 

5 spoilers: The Enigma code was broken and the Allies won, thanks 

Alan. 



(part of which was becoming the computer science 

community) on whether we should have separate storage 

for the two things or not. 

In 1951, Turing was arrested.  After his house was burgled, 

he had admitted to a police officer that he was dating a 

young man.  He was eventually offered the choice between 

prison and chemical castration.  About two years later he 

died — probably suicide.  Turing was only 40 and he could 

certainly have continued making contributions to computer 

science for decades. In August, 2014, Alan Turing was 

given a royal pardon by Queen Elizabeth6. 

But the work went on.  In the United States, John von 

Neumann7 worked on the EDVAC project, a computer that 

had one part for processing, and one part that stored both 

data and instructions together, in the same way.  All digital 

computers since are based on this stored program machine 

(also known as a von Neumann machine). 

Accelerating Technology 

  

In 1950, a computer was an enormous object.  You didn't 

walk into the room with your computer, you walked into 

your computer, which took up the whole room.  The basic 

component computers were built from was the vacuum 
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tube, which was large and complex and expensive to build. 

These computers were mostly owned by governments or 

big businesses because they were so expensive.  In the 

years since, we have made our computers smaller, faster, 

and cheaper. 

Eventually, vacuum tubes were replaced by much smaller, 

cheaper components called transistors. Computers built 

from smaller, cheaper pieces could be smaller, cheaper 

computers.  But we were still building computers by 

creating thousands of these transistors and assembling 

them, an expensive, time consuming process.   

At the start of the 1970s, a new approach was found – 

integrated circuits.  This allowed the transistors to be 

created all as one piece, in a single process, at microscopic 

size.   

The resulting hardware was so small they were called 

microprocessors. And, amazingly, the integrated circuit 

process not only made the computers smaller, but even 

cheaper to build.  For the first time, we could build 

computers you could actually fit on a desk, and that were 

affordable for personal use.  They have continued getting 

smaller since. 

Although certainly people started buying computers to do 

necessary tasks, they also wanted to be able to play games 

on the computer.  Computer games grew more popular, 

and then something strange happened: game consoles 

came out.  A game console is a computing machine that 

does only one kind of task: it plays games.  It isn’t 

designed for doing word processing or spreadsheets.  We 

are back to single-purpose computing machines!  

Why, when that means we have to buy more than one kind 

of computer? Some tasks, such as certain kinds of 

calculation used for graphics, could be done through a 



process using simple general operations, but could also be 

built-in with specialized hardware.  So if we don’t have to 

compromise to provide general capabilities to do a variety 

of tasks, we can build a single purpose computer that is 

particularly good at the one task it does, and do it more 

cheaply than building a general purpose computer that is 

very good at this one task and also good at everything else 

it needs to do.  

In addition to the advances in hardware, we have made 

advances in software.  The Operating System is the 

program (examples are Microsoft Windows 10, or Mac OS X 

10.7 Lion) that is in charge of everything on the computer.  

In the 1980s and 1990s, many advances were made in 

designing operating systems and other programs that were 

friendlier for people to use, encouraging even more people 

to buy home computers.   

A network is a system of computers that can communicate 

with each other.  Although the beginnings of the ideas that 

would later be used to create the internet were already 

coming together in the 1960s, it was in the 1990s that a 

global network of computers that communicated with each 

other became reality.  Our networking abilities have 

continued to advance, often spurred by the difficulties of 

dealing with this huge-scale network that was cobbled 

together through trial and error before we knew what we 

were doing. 



Moore’s Law 
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Moore's law is an observation made by Gordon Moore: the 

number of transistors we were able to manufacture to fit in 

the same space at the same price has doubled roughly 

every two years. 

Note that this is an observation about the past not a 

physical law that determines the future9.  Hardware 

companies have taken this “law” to heart and try to time 

things to this schedule.   

Other people noticed that there have been similar patterns 

for our advances in speed, graphics, and other aspects of 

computing technology.   

People in the media who don’t know what the law actually 

says often talk about “processing power” or the “power of a 

computer” doubling every two years.  But computer 

“power” is an advertising term with no real meaning, so it 

doesn’t make sense to talk about doubling it. 

 

8 "115 Years of Moore's Law, Transcending Silicon" by jurvetson is 

licensed under CC BY 2.0. To view a copy of this license, visit: 
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some time. 



Integrated Circuits 

With integrated circuits, a whole component of a computer 

can be made in one piece out of one material. How? 

This material must be something that can sometimes be an 

insulator – not letting electricity through – and sometimes 

a conductor – letting electricity through like a wire.  This 

kind of material that can act both ways is called a 

semiconductor, and how it acts depends on how we 

chemically treat it. 

The process for creating a component the integrated circuit 

way is to first take our semiconductor and cover it in a 

protective film that keeps any chemical from getting 

through, but which breaks up when subjected to UV light. 

A mask is like a stencil that has holes where the conductor 

parts of the component should be.  A light is flashed 

through the mask onto the film, making parts of the film 

break down so that some areas of the semiconductor are 

still protected, but others are open. 

Then we chemically treat it, and the areas the chemicals 

touch have their electrical properties changed.   

So essentially, an entire component of a computer can be 

made by the process: film, flash, spray with chemicals.  

(For real components, this will probably be repeated a few 

times.)  In fact, we can make many copies of the same 

component at once by this method on one big slice of 

semiconductor, and just cut them out afterwards. So the 

process is very fast.  It is also relatively cheap.  And we 

can make the components as small as we can make the 

holes in the mask. 



Storage and Binary 

 

We needed to store information in a computer, but how? 

Electronic components respond to electricity – either 

electricity ON or electricity OFF.  That’s all we have to go 

on, so we will have to find a way to store information with 

just those two possibilities. 

Power OFF is generally used to mean no, and power ON to 

mean yes.  So, if we had some situation for which we 

needed to store yes, we could light up one electronic 

component with power, walk away, come back later, and 

find the component still ON – successfully storing a yes.  

Similarly we could turn that component OFF, walk away, 

come back, find it OFF, and have successfully stored a no.  

So now we have figure out how to store  something in 

electronic form.  

We also use OFF to store the number 0 and ON to store the 

number 1.  So, suppose someone stored a 1 by turning a 

component ON.  I could then come by later, check the 

component, and find out that they had stored 1.  (Same 

goes for storing 0 by turning the component OFF.) 

So now we have a way of storing the number 0 and the 

number 1 in a computer!!! 

Which is as far as we ever got. 



Modern computers are able to store the number 0 and the 

number 1, and that’s it.  That’s all.  The computer you’re 

reading this on can only store 0’s and 1’s. 

But it turns out that’s enough to store any number.  

Decimal numbers use only 0,1,2,3,4,5,6,7,8,9, but does 

that mean we can’t store numbers higher than 9?  No, we 

just put those symbols together in longer patterns to 

represent larger numbers.  After 9 we go to two-digit 

patterns: 10, 11, 12,…, 98, 99. Once we run out of two-

digit patterns, we go to three digits. 

 

We can do the same even if we only have 0 and 1.  We just 

have to go to longer patterns sooner.  Numbers based on 

just 0 and 1 are called binary numbers. After 0 and 1, the 

next number in binary is spelled 10.  That’s how we spell 

“ten” in decimal, but it’s how we spell “two” in binary.  So 

for two digits we have 10, 11, and then we have to go to 

three digits. 

For any number you choose, there is a binary pattern (just 

0’s and 1’s).  For large numbers, these patterns are very 

long.  Every binary pattern represents a number. 

The math to convert between binary and decimal is fairly 

simple. Think of how decimal numbers are written.  1010 in 

decimal means we have one thousand, no hundreds, one 

ten, and no ones: (1 * 1000) + (0 * 100) + (1 * 10) + (0 

* 1).  Each place in the number is a power of 10. 



In binary, instead of thousands, hundreds, and tens, the 

places in a number are based on powers of two: 2, 4, 8, 

16, etc. So 1010 in binary means one eight, no fours, one 

two, and no ones: (1 * 8) + (0 * 4) + (1 * 2) + (0 * 1). 

Don’t forget: We write binary patterns with the symbols 0 

and 1, but inside the computer, these are instead ONs and 

OFFs.  You can picture a pattern storing a number inside 

the computer as a row of little lights, some of which are ON 

and some OFF. 

Now we know how to store numbers.  But what about 

everything else?  We will have to reuse our binary patterns 

to mean more than one thing.  The same pattern might 

sometimes represent 

• a number 

• a letter 

• the amount of red at one point in a picture 

• the pitch of a sound 

• an instruction to tell the computer one step in doing a task 

• … 

For instance, the pattern 01000001 is used for both the 

number 65 and the letter capital A. 

Based on the context, the computer knows how to interpret 

the pattern at any given time.  For instance a pattern in a 

.mp3 file would be interpreted as sound but the same 

pattern used in a .docx file might be interpreted as text. 



Processing 

 

The part of the computer that does processing is called the 

CPU.  We have a similar problem for processing as we did 

for storage.  How do we build something electronic that 

can perform even a very simple mental task without a 

brain???? 

The basic electronic components we can build are called 

gates.  You can picture them as a box with two10 wires 

coming in and one11 coming out.  Suppose the wires going 

in are A and B, and the wire coming out is C.  There are 

four possibilities for A and B: 

• both OFF 

• A OFF and B ON  

• A ON and B OFF 

• both ON 

For each of these possibilities, we need to decide whether 

the gate should turn the output, C ON or OFF in that case. 

Example: Adding Binary 

Here’s an example of how much thinking has to go into 

designing hardware to do even something that seems very 

simple: Suppose we use A and B to represent two numbers 

 

10 but sometimes more, sometimes just one. 
11 or, as you suspected, more 



that we’re adding, and the result, C should be the sum 

A+B.  Remember that OFF is 0 and ON is 1.   

• 0+0=0, so if A and B are both OFF, we want to turn C OFF 

• 0+1=1 so if A is OFF and B is ON, we want to turn C ON 

• 1+0=1 so if A is ON and B is OFF, we want to turn C ON 

What if both are ON?  1+1=10  which is a two digit 

number, so if A and B are both ON C should be OFF, but 

this shows we also need to add more wires and another 

gate to handle a carry.  The carry gate would have the 

same A and B going in, but be set up to always output OFF 

unless A and B are both ON, and our result would include 

both C and the wire from this new gate. 

So, we can figure out how to set up gates to add one digit 

binary numbers.  To add longer numbers, we’ll have to do 

this for each digit (and handle a carry from the previous 

digit).  So even for just adding, things get fairly complex 

pretty fast. 

Instructions and Machine Language 

For every ability we want to build into our computer, 

someone has to figure out what the gates should look like 

to combine binary patters and achieve that goal.  This is 

why the capabilities that can be built into a CPU tend to be 

very simple – adding, subtracting, copying patterns, etc.  

Anything more complex must be built up from these very 

simple abilities. 

The part of the CPU that actually does such operations is 

the ALU, the arithmetic logic unit. 

For each capability in the CPU of a computer there must be 

a binary pattern used to indicate that we want to do that 

as the next step of our task.  These are called the 

instructions.  A program to do anything interesting will be 

made up of thousands and thousands of instructions. 



The list of instructions that a CPU understands are called 

its machine language.  Different kinds of computer have 

different machine languages.   

You can imagine wires running from each binary ON/OFF in 

the instruction register to different parts of the CPU so the 

instruction can tell the ALU, data registers, etc what they 

should do.  In fact, in real computers things are more 

complex and there is a whole extra component of the CPU 

called the control unit that deals with decoding the 

meaning of each instruction and setting the CPU to respond 

correctly, but that is outside the scope of this course. 

Input and Output 

A computer that can store and process data technically 

does what we want, but isn’t useful to us unless we have a 

way to get information into and out of it.  Since the 

computer needs everything to be in binary, and almost no 

humans like to work in binary, we need input devices to 

translate information coming in into a form the computer 

can use, and output devices to translate information 

coming out into a human-friendly form. 

A keyboard is a fairly simple input device.  You press a key 

with the letter you want on it, and the binary pattern for 

that letter is sent into the computer’s storage.  Most input 

devices have a much harder job. 



Anything stored in a computer must be in digital form, that 

is, it must be a list of discrete values (that is, individual 

numbers).  But most things in the world aren’t lists of 

values.  They aren’t lists of anything.  Most of the world is 

analog – continuous information. 

Sampling 

Consider, for instance, a picture of a flower.  That picture 

isn’t a list, but if we want to store it in the computer, we 

need a way to convert it into one.  The standard way to 

convert from analog to digital is sampling – break the 

analog information into small pieces, and then record a 

value for each piece. 

For the picture, we can cut it into small squares, and 

record the color at the center of each square.  A standard 

way to store a color in a computer is to have three 

numbers saying how much red, how much green, and how 

much blue are in the color.  So the squares in the middle of 

the picture would be stored with high values for red and 

low for green and blue.  (In the computer, of course, these 

numbers are stored as binary patterns.) 

Cutting the picture into a fairly small number of squares 

resulted in something that doesn’t look much like the 

original picture.  To get closer to the original, we could 



divide it into more pieces, but notice that this will make our 

list of numbers much longer.  Analog information can 

always be divided into smaller pieces to get more detail, so 

by definition sampling is always leaving out some of the 

information in the original analog. 

We could sample sound by recording the pitch and volume 

at every millisecond, or the motion of a mouse by 

recording the x and y position every millisecond.   

Note that all of the following are digital, in different 

formats: 

• A B C    format: Latin alphabet 

• 1 2 3    format: decimal 

• 011 101 100   format: binary 

To be stored in the computer, information must be digital, 

stored in binary format. 

Once we have the information stored, the computer can 

process it, but to do us any good we then need it 

converted back to a form we can understand, using an 

output device such as a monitor or speaker.  The processes 

for turning a list of values back into something a human 

can appreciate are just as complicated as what we have to 

do to get the data into the computer in the first place. 

 


